# On $\omega$ —incompleteness of an Axiomatic Number Theory\*\*

Ву

# Kempachiro Оназні

1. The relativization of quantifiers is useful in proving the undecidability of formal theories. 1) In the present paper a complicated relativization is considered, by which an independence in an axiomatic number theory is proved; i. e., a problem in [1]<sup>2</sup>) (p. 279, footnote) is solved.

The relativization applies to a particular number theory  $\Sigma$ , which is formalized within the first order predicate logic (with the usual primitive symbols), and has the following axioms for number theory. Axioms for number theory.

Rules of inference of  $\Sigma$  are as follows;

of inference of 
$$\Sigma$$
 are as follows, 
$$R_1 = \underbrace{A \ A \supset B}_{B} = \underbrace{R_2}_{C \supset (x) A(x)} = \underbrace{R_3}_{C \supset (x) A(x)} = \underbrace{A(x) \supset C}_{(\exists x) A(x) \supset C}$$

$$R_4 = \underbrace{A(0)}_{A(a)} = \underbrace{(x) (A(x) \supset A(x'))}_{A(a)},$$

where C does not contain x free, a is an arbitrary term, and in  $R_4$ , x is not contained in A(a).

Thus, in terms of the above stipulation the problem to be solved here is, "Is( $<_4$ ) independent of  $\Sigma$  or not? "

$$(<_4)$$
  $(x)(y)(x< y \supset x' = y \lor x' < y).$ 

The proof of the independence proceeds in the following manner.

A is valid in  $\Sigma$ , if and only if the correlated formula A is valid in the correlated theory  $\Sigma^{(U)}$ . Every formula valid in  $\Sigma^{(U)}$  is "satisfiable". On the other hand, the formula  $(<_4)$  (V) (correlated with  $(<_4)$ ) is not "satisfiable". Therefore  $(<_4)$  is independent of  $\Sigma$ .

Contribution from the Shimonoseki College of Fisheries No. 282, Received Aug. 5, 1959.

 $A^{(U)}$  and  $\Sigma^{(U)}$  are defined in section 2. Section 3 deals with the definition of the notion "satisfiability", and the proof of the independence of  $(\leq_4)$  therewith. In section 4, several consequences from the independence are pointed out.

#### 2. Relativization.

# 2.1. Relativization of quantifiers.

In this section  $U(\cdots, \cdots)$  is a definite binary predicate not contained in  $\Sigma$ .

Given any formula F and a variable t, which is not contained in F, then F° is obtained by replacing every sub-formula of the form (x) G (x) or (∃x) G (x), with a formula  $(x) (U(t,x) \supset G(x))$  or  $(\exists x) (U(t,x) \& G(x))$ , respectively. t is called the sub-variable of F. Moreover, if F contains free variables a1,.,., an, then F\* is introduced with

$$(U)t, a_1) \supset (U(t, a_2) \supset (\cdots \cup (U(t, a_n) \supset F^{\circ})) \cdots),$$

where t is the sub-variable of F. (If F contains no free variable, F\* is F°.) Thus, in F all variables are correlated with  $U(\dots, \dots)$ . Let  $(\exists u)(t) U(u,t) \supset F$ ) be denoted by F(U), provided that u is a variable not contained in F.

As the set of all free variables is linearly ordered by a fixed ordering, F(U) is uniquely determined.

The transformation from F to  $F^{(U)}$  is called the relativization of quantifiers, and F is called relativized to  $F^{(U)}$  for  $U(\dots, \dots)$ .

### 2.2. Relativized theory.

The relativized theory  $\Sigma^{(V)}$  from  $\Sigma$  for  $U(\dots, \dots)$  is obtained by the relativization of quantifiers of all formulas in  $\Sigma$ , as shown below;

- 2.2.1. Primitive symbols in  $\Sigma^{(U)}$  are those of  $\Sigma$  or  $U(\cdots,\cdots)$ .
- 2.2.2. All the formulas of  $\Sigma^{(U)}$  are of the form  $F^{(U)}$  correlated with a formula Fof  $\Sigma$ .
- 2.2.3.  $A^{(U)}$  is an axiom of  $\Sigma^{(U)}$  if and only if A is an axiom of  $\Sigma$ . Rules of inference of  $\Sigma^{(U)}$  are as follows;

where the conditions for free variable x and free term a are the same as in  $\Sigma$ . Since the relativization is isomorphic, if A is a valid formula in  $\Sigma$ , then  $A^{(U)}$  is derivable in  $\Sigma^{(U)}$ , and vice versa. Thus, if  $\Sigma$  is consistent, then  $\Sigma^{(U)}$  is consistent.

#### 3. An interpretation of the relativization.

In the following, a notion "satisfiability" is defined such that all the relativized axioms are satisfiable, and that the relativized rules of inference in  $\Sigma^{(V)}$  conclude from satisfiable formulas to a satisfiable formula. Hence, if a formula F is provable in  $\Sigma$ , then  $F^{(U)}$  is satisfiable. Finally, only if  $(<_4)^{(U)}$  is proved to be unsatisfiable, then the problem dealt in this paper is positively solved.

#### 3.1. Domain $\triangle$ .

△ is obtained from two individual constants o and w, by applying operation' finite times, between two elements of which the following conditions hold; 3)

3.1.1. For arbitrary elements a, b, c, a=a and a < a' are true, and a < a is false. If a < b and b < c are true, then a < c is true.

3.1.2. For any natural numbers m and n,

$$O^{(n)} < O^{(m)}, w^{(n)} < O^{(m)}, O^{(n)} < w^{(m)}, and w^{(n)} < w^{(m)}$$

are equivalent to each other.

3.1.3. For any natural number m and n,

 $O^{(n)}=w^{(m)}$  and  $w^{(n)}=O^{(m)}$  are false,

where by a(n) we understand n-times application of operation on a.

3.2. U(···,···).

Predicate U(a,b) between a and b, which are elements of  $\triangle$ , is specified as follows:

- 3.2.1. For any x of  $\triangle$  such that  $x=w^{(n)}$ , U(x, O) and U(x, x) are true.
- 3.2.2. If, for any x and y of  $\triangle$ , U(x, y) is true, then U(x, y') and U(x', y') are true.
- 3.2.3. If there exists y, an element of  $\triangle$  such that U(x, y) is true, for any natural number n,  $x=O^{(n)}$  is false.
- 3.3. Satisfiability.

The notion "satisfiability" is defined in the well-known way. All variables are assumed to be linearly ordered, and let the i-th variable be denoted by  $\mathbf{x}_i$ . "Satisfiability" is defined for all the formulas, which are constructed from two individual constants o and w by the usual rules of formation.

Let the set of all infinite sequences of elements of  $\triangle$  be denoted by S, and the i-th term of  $f \leftarrow s$  be denoted by f(i).

3.3.1. T.

A function T on formulas is recursively defined as follows;

- 3.3.1.1.  $T(x_i = x_j)$  is the set of all  $f \leftarrow S$  such that f(i) = f(j).
- 3.3.1.2.  $T(x_i = a^{(n)})$  (a is O or w) and  $T(a^{(n)} = x_i)$  are the set of all  $f \leftarrow S$  such that  $f(i) = a^{(n)}$ .
- 3.3.1.3. For any n,  $T(a^{(n)}=a^{(n)})\equiv S$ . (" $\equiv$ " means the extensional identity in the set theory.)
- 3.3.1.4. For m = n,  $T(a^{(m)} = a^{(n)}) \equiv \theta$ ,

where  $\theta$  is the empty set.

- 3.3.1.5. For any m and m,  $T(O^{(m)}=w^{(n)}) \equiv T(w^{(m)}=O^{(n)}) \equiv \theta$ .
- 3.3.1.6.  $T(x_i < x_j)$  is the set of all  $f \rightarrow S$  such that f(i) < f(j).
- 3.3.1.7.  $T(a^{(n)} \le x_i)$  is the set of all  $f \mapsto S$  such that  $a^{(n)} \le f(i)$ .
- 3.3.1.8.  $T(x_i \le a^{(n)})$  is the set of all  $f \leftarrow S$  such that  $f(i) \le a^{(n)}$ .
- 3.3.1.9.  $T(a^{(m)} \le a^{(n)}) \equiv S$ , if n > m,  $T(a^{(m)} \le a^{(n)}) \equiv \theta$ , if  $n \le m$ .

- 3.3.1.10.  $T(O^{(m)} < w^{(n)}) \equiv T(w^{(m)} < O^{(n)}) \equiv T(w^{(m)} < w^{(n)}) \equiv T(O^{(m)} < O^{(n)}).$
- 3.3.1.11.  $T(U(x_i, x_j))$  is the set of all  $f \rightarrow S$  such that U(f(i), f(j)).
- 3.3.1.12.  $T(U(a^{(n)}, x_i))$  is the set of all  $f \rightarrow S$  such that  $U(a^{(n)}, f(i))$ .
- 3.3.1.13.  $T(U(x_i, a^{(n)}))$  is the set of all  $f \leftarrow S$  such that  $U(f(i), a^{(n)})$ .
- 3.3.1.14.  $T(U(O^{(m)}, a^{(n)})) = \theta$ .
- 3.3.1.15.  $T(U(w^{(m)}, a^{(n)}))$  is the set of all  $f \rightarrow S$  such that  $U(w^{(m)}, a^{(n)})$ . Let A and B be any formulas.
- 3.3.1.16.  $T(\neg A) = S T(A)$ .
- 3.3.1.17.  $T(A \lor B) = T(A) + T(B)$ .
- 3.3.1.18. T(A & B) = T(A) T(B).
- 3.3.1.19.  $T(A \supset B) = S T(A) + T(B)$ .
- 3.3.1.20.  $T((x_i)A(x_i))$  is the set of all  $f \rightarrow S$  such that any  $g \leftarrow S$  which differs from at most the i-th place belongs to  $T(A(x_i))$ .
- $3.3.1.21. \quad T((\exists x) A(x_i)). \equiv . \quad T(\neg(x_i) \neg A(x_i)). \equiv . \quad S T((x_i) \neg A(x_i)).$
- 3.3.2. A formula A is called satisfiable, if T(A) = ... S.
- 3.4. The axioms of  $\Sigma^{(V)}$  are satisfiable.

Proof. From the definitions 3.3.1.16-21, it is easily seen that,

- 3.4.1. Logical axioms are satisfiable.
- 3.4.2. From 3.3.1.1  $(J_1)^{(U)}$  is satisfiable.

Similarly,  $(J_2)^{(U)}$ ,  $(<_1)^{(U)}$ ,  $(<_2)^{(U)}$ , and  $(<_3)^{(U)}$  are satisfiable.

3.4.3.  $R_1$  infers satisfiable formulas to a satisfiable formula.

Assume that A(U) and (A B)(U) are satisfiable.

Then, there exist natural numbers n and m such that

(t) 
$$(U(w^{(m)}, t) \supseteq A^*)$$
 and (t)  $(U(w^{(n)}, t) \supseteq (A \supseteq B)^*)$ 

are satisfiable, where  $(A \supset B)^*$  is of the form

 $(U(t, a_1) \supset (\cdots \cup (U(t, a_k) \supset (A \supset B)^\circ) \cdots),$  with free variable  $a_1, \cdots, a_k$  contained in  $A \supset B$ .

Let max (n, m) be 1. Then

- (t) (U(w, t) A) and (t) (U(w, t) (A B)) are satisfiable. Hence,
- (t)  $(U(w^{(1)}, t) \supset (U(t, a_1) \supset (\cdots (U(t, a_k) \supset A^{\circ} & (A \supset B)^{\circ}) \cdots)$  are satisfiable.

Since  $(A \supset B)^{\circ}$  is  $A^{\circ} \supset B^{\circ}$ , (t)  $(U(w^{(1)},t) \supset (U(t, a_1) \supset (\cdots(U(t, a_k) \supset B^{\circ},)\cdots)$ . is satisfiable. Thus,  $B^{(U)}$  is satisfiable.

3.4.4. R<sub>2</sub> and R<sub>3</sub> infer from a satisfiable formula to another satisfiable one.

Proof is easy from the definition of T.

- 3.4.5.  $R_4$  infers from a satisfiable formulas to another satisfiable one. Lemma 3.4.6. is useful in the proof of 3.4.5.
- 3.4.6. If, for any n,  $(A(O^{(n)}))^{(U)}$  is satisfiable, then there exists a natural number N such that, for any m>N,  $(A(w^{(n)}))^{(U)}$  is satisfiable.

Proof of 3.4.6. is made by the induction on the number of quantifiers in A(o(n)).

3.4.6.1. The case in which  $A(O^{(n)})$  has no quantifier.

Assume that  $(A(O^{(n)}))^{(U)}$  is satisfiable, for any n where  $A(O^{(n)})^{(U)}$  is of the form  $(\exists u)(t)(U(u, t) \supset A(O^{(n)})^*)$ .

Then, there exists a natural number M, such that  $(t) (U(\omega^{(M)}, t) \supset A(O^{(n)})^*)$  is satisfiable. From the definitions of T and  $U(\cdots, \cdots)$ , for any m > M  $(t) (U(w^{(m)}, t) \supset A(O^{(n)})^*)$  is satisfiable, especially, for N the number of all symbols in  $A(O^{(n)})$ ,  $(t) (U(w^{(N)}, t) \supset A(O^{(n)})^*)$  is satisfiable. Then,  $(t) (U(w^{(N)}, t) \supset A(w^{(n)})^*)$  is satisfiable. Thus, there exists a natural number N such that, for any n > N,  $A(w^{(n)})^*$  is satisfiable.

3.4.6.2. Suppose that if for any m,  $B(O^{(m)})$ , with at most k1-1 quantifiers, is satisfiable, then there exists a natural number N such that, for any n>N,  $B(w^{(n)})^{(V)}$  is satisfiable.

Let  $((x) \ A \ (x,O^{(n)}))^{(U)}$ , with (k+1)-quantifiers, be satisfiable for any n. Then  $(A(x,O^{(n)}))^{(U)}$  is satisfiable for an arbitrary natural number n. Therefore, there exists N such that, for any m>N,  $(A(x, w^{(m)}))^{(U)}$  is satisfiable since  $A(x, w^{(m)})$  has only k-quantifiers. Hence, there exists N such that, for any m>N,  $((x) \ A(x, \omega(m))^{(U)})$  is satisfiable.

3.4.6.3.6) In the case in which A is of the form  $B \lor D$ , B & D,  $B \supset D$ , and  $A \supset B$ , it is easily shown that If, for B and D, 3.4.6. holds, then, for A, 3.4.6. holds.

3.4.6.4. The case in which A is of the form  $(\exists x) D(x, O^{(n)})$  is easily treated by 3.4.6.2-3.

Thus, 3.4.6. is proved.

Proof of 3.4.5.

Assume that (A(O)) and  $(x)(A(x) \supset A(x'))$  are satisfiable.

Then, from 3.4.3, for arbitrary natural number n,  $A(O^{(n)})$  is satisfiable. Therefore, by 3.4.6. there exists  $N_o$  such that, for any  $m > N_o$ ,  $(A(w^{(m)}))^{(U)}$  is satisfiable.

Hence, (t)  $(U(w^{(No)}, t) \supset (U(t, O^{(n)}) \supset A(O^{(n)})^*)$  and

(t) 
$$(U(w^{(No)}, t) \supset (U(t, w^{(n)}) \supset A(w^{(n)})^*)$$
 are satisfiable.

Then, (t)  $(U(w^{(No)}, t) \supset A(a)^*)$  is satisfiable, where a is a free variable.

3.5. From the above proof any formula derivable in  $\Sigma^{(V)}$  is satisfiable. Hence, if a formula F is provable in  $\Sigma$ , then  $F^{(U)}$  is satisfiable. But  $(<_4)^{(U)}$  is not satisfiable, for, for in any n,

$$O(n) < w(n+1) \supset O(n+1) = w(n+1) \setminus O(n+1) < w(n+1)$$

is false. Therefore,  $(<_4)$  is independent of  $\Sigma$ . Thus, the problem in (1) is solved.

4. Consequences.

From the result obtained in § 3, several consequences are obtained,

4.1. The following formulas are independent of.

(a) (b) (A (b) & (x) (A (x) 
$$\supset$$
 A (x'))  $\supset$  (a = b $\lor$ b $<$ a $\supset$  A (a)))

$$(x)(y)(x < y \supset x' < y')$$

$$(x)(y)(x < y \lor x = y \lor y < x)$$

It is easy to prove them.

4.2.  $\Sigma$  is  $\omega$  —incomplete.

Proof. Denote  $(<_4)$  by (x)(y)A(x,y).  $A(O^{(n)}, O^{(m)})$  is valid in  $\Sigma$  for any m and n. But (x)(y)(x,y) is independent.

# References

- 1) TARSKI, Cf. A. 1953. Undecidable Theories, I.5.
- 2) [1], HILBERT, D. u. P. BERNAYS, 1934. Grundlagen der Mathematik, vol. 1
- 3) "=" and ">" moreover O in this section are new symbols different from those in &1, but no confusion is likely to occur.
- 4) For EXAMPLE, cf. S. C. KLEENE, 1952, Introduction to Metamathematics, § 50.
- 5) For EXANPLE, cf. E. MENDELSON, (1956), Some Proofs of Independence in Axiomatic Set Theory, Journal of Symbolic Logic, vol. 21 p. 293-4.
- 6) Those are easily shown by the following proposition. Let A (a<sub>1</sub>, ······ a<sub>ℓ</sub>, o (n) have no more individual constants than a<sub>1</sub>, ······ a<sub>ℓ</sub>, If and only it A (a<sub>1</sub>, ····a<sub>ℓ</sub>, o (n)) is satisfiable, A (a<sub>1</sub>, ······, a<sub>ℓ</sub> a(n)) is satisfiable, where a is o(m) if a is ω(n), or a is ω(m) if a is o(m).