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1. The relativization of quantifiers is useful in proving the undecidability of formal
theories. D In the present paper a complicated relativization is considered, by which
an independence in an axiomatic number theory is proved; i. e., a problem in [ 13
(p. 279, footnote) is solved.

The relativization applies to a particular number theory X, which is formalized
within the first order predicate logic (with the usual primitive symbols), and has the

following axioms for number theory. Axioms for number theory.

(J1) (x) (x=x),
(J2) X M E=yDADAWM)),
(<) (] x <x)
(<e) (x) () () <y & y <zDx >z),
(<s) (x) (x>x').
Rules of inference of I are as follows;
R, A ADB Ry CDA (x) R,  A®DC
B CO®AR) (dx)A(x) DC
R, A(0) (x) Ax)DAK))
Aa) ’
where C does not contain x free, a is an arbitrary term, and in Ry, X is not contained
in A(a).

Thus, in terms of the above stipulation the problem to be solved here is, "Is(<4)
independent of X or not? ”

(<o) (x) (v) x<yDx' =y Vx' <y).

The proof of the independence proceeds in the following manner.

A is valid in 3, if and only if the correlated formula A is valid in the correlated
theory Z(U. Every formula valid in 3V is /satisfiable”. On the other hand, the
formula (<(4) <V (correlated with (<(,)) is not ”satisfiable. Therefore (<(4) is
independent of 2.
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A and Z(U are defined in section 2. Section 3 deals with the definition of
the notion "satisfiability”, and the proof of the independence of (<(;) therewith. In
section 4, several consequences from the independence are pointed out.

2. Relativization. '

2.1. Relativization of quantifiers.

Given any formula F and a varjable t, which is not contained in F, then F° is
obtained by replacing every sub-formula of the form (x) G (x) or (dx) G (x), with a
formula (x) (U (t,x) DG x)) or (@x) (U (t,x) & G (x)),respectively. t is called the
sub-variable of F. Moreover, if F contains free variables a{,.,.,., an, then F* is
introduced with

(Ut a) DU, a;) D¢ (U, an) DF%)) ),
where t is the sub-variable of F. (If F contains no free variable, F* is F°.) Thus,
in F wall '\./jariableS are correlated with U (---,--). Let (Ju) (#) U (u,t)DvF) be denoted
by FECU'), prbvided that u is a variable not contained in F. ’

As the set of all free variables is linearly ordered by a fixed ordering, F is
uniquely determined.

The transformation from F to F(W is called the relativization of quantifiers, and
F is called relativized to F(U for U(---, ).

2.2. Relativized theory.

The relativized theory (V> from ¥, for U(---,-++) is obtained by the relativization of

quantifiers of all formulas in 3, as shown below;

2.2.1. Primitive symbols in Z(U are those of 2 or U(---, ).

2.2.2. All the formulas of (W) are of the form F correlated with a formula F
of Z. ,

2.2.3. AW is an axiom of (U if and only if A is an axiom of 2.

Rules of inference of I (U2 are as follows;

R, (W A (ADB)W R, W (COA (x)) W

o BV (€T (x) A (x) D@

Ry (W (A(x) DC)W R, (A0 ((x) (AG) DAE)))W
(ExAx) DC)W (A(a)) ’

where the conditicns for free variable x and free term a are the same as in 2.
Since the relativization is isomorphic, if A is a valid formula in %, then AU is
derivable in (U0, and vice versa. Thus, Vif % is consistent, then XU is consistent.
3. An interpretation of the relativization.

In the following, a notion /satisfiability” is defined such that all the relativized
axioms are satisfiable, and that the relativized rules of inference in E(Vj conclude
from satisfiable formulas to a satisfiable formula. Hence, if a formula F is provable
in 3, then FOD is satisfiable. Finally, only if (<J4)(U is proved to be unsatisfiable,
then the problem dealt in this paper is positively solved.

3.1. Domain A.
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A is obtained from two individual constants o and w, by applying operation’
finite times, between two elements of which the following conditions hold; ®
3.1.1. For arbitrary elements a, b, ¢, a=a and a<{a’ are true, and a<la is false.
If a<b and b<{c are true, then a<lc is true.
3.1.2. For any natural numbers m and n,
O <O, (MO, O Cwm), and wlm)<wim
are equivalent to each other.
3.1.3. For any natural number m and n,
O = w(m and wind=00 are false,
where by a(™) we understand n-times application of operation’ on a.
3.2, U, ).
Predicate U(a,b) between a and b, which are elements of A\, is specified as
follows;
3.2.1. For any x of A such that x=w(, U(x, O) and U(x, x) are true.
3.2.2. If, for any x and y of A, U (x, y) is true, then U (x, y’) and U (x', y")
are true.
3.2.3. If there exists y, an element of A such that U(x, y) is true, for any natural
number n, x=00" is false. |
3.3. Satisfiability.
The notion "satisfiability” is defined in the well-known way. All variables
are assumed to be linearly ordered, and let the i-th variable be denoted by x;.
"Satisfiability” is defined for all the formulas, which are constructed from two
individual constants o and w by the usual rules of formation.
Let the set of all infinite sequences of elements of /\ be denoted by S, and the
i-th term of f<s be denoted by f(i).
3.3.1. T.
A function T on formulas is recursively defined as follows;
3.3.1.1. T(x; =x;) is the set of all £« such that f(i) =f(j).
3.3.1.2. T(x; =a()(ais O or w) and T (al® = x; ) are the set of all {5 such
that (i) = a(®,
3.3.1.3. For any n, T(@™=a()=S. ( “=” means the extensional identity in the
set theory.)
3.3.1.4. For m=n, T (@™ =alm)=g,
where 0 is the empty set.
3.3.1.5. For any m and m, T (O =w(nd) =T (wim=00n) =4.
3.3.1.6. T(x; <x;) is the set of all £—S such that £({) <£(j).
3.3.1.7. T(m<x;) is the set of all =5 such that al™<{({).
3.3.1.8. T(x; <a(™) is the set of all f«S such that f(i)<latm.
3.3.1.9. T(am<alm) =S, if n>m,
T (@< alm) =g, if n=m.
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3.3.1.10. TO®wlm) =T (wmd< Q) =T (wid<wlnd) =T (O O(m)),
3.3.1.11. T(U(:, x;)) is the set of all £—S such that U{E), £()).
3.3.1.12. T(U@™, x;)) is the set of all {5 such that U@, £{)).
3.3.1.13. TU;, atm)) is the set of all S such that U{ (), al2d)),
3.3.1.14. TUOMm, alnd))=p,
3.3.1.15. TUw®@, aln))) is the set of all £—S such that U (w@, alm)), Let A
and B be any formulas.
3.3.1.16. T(1A). =. S—-T(A).
3.3.1.17. TAVB).=. T(A) +T(B).
3.3.1.18. T(A & B).=. T(A) T(B).
3.3.1.19. T(ADB).=. S—TA)+T(B).
3.3.1.20. T((xi)A(x5)) is the set of all {—>S such that any g<S which differs from
at most the i-th place belongs to T(A(x;)).
33.1.21. T(ExAE: ). =. TCIxi) JAE)). =. S—T((x5) 1A E;)).
3.3.2. A formula A is called satisfiable, if T(A).=. S.
3.4. The axioms of 3(V> are satisfiable.
Proof. From the definitions 3.3.1.16—21, it is easily seen that,
3.4.1. Logical axioms are satisfiable.
3.4.2. From 3.3.1.1 (J;) is satisfiable.

Similarly, (J;), (<)@, (<), and (<) are satisfiable.
3.4.3. R, infers satisfiable formulas to a satisfiable formula.
Assume that A and (ADB)(WU) are satisfiable.
Then, there exist natural numbers n and m such that

() (Uw™, ) DHA*) and (1) (UMW, t) J(ADBY™)
are satisfiable, where (ADB)* is of the form .
(U, ay) D0 (U, ax) J(ADB)Y) - ),  with free variable a;,-, ax

contained in A JB.
Let max (n, m) be . Then

®)(Ulw, t) A) and (t) (U (w, t) (A B)) are satisfiable.
Hence,

® (U WD, )DUE, a) D¢ U, ax) DA® & (ADB)) ) are satisfiable.
Since (ADB)° is A°D B°, (D (U (Wi, ) (U (t, a;) D¢ U, ax) D B, )--). is
satisfiable. Thus, B(U is satisfiable.
3.4.4. R; and Ry infer from a satisfiable formula to another satisfiable one.
Proof is easy from the definition of T.
3.4.5. R, infers from a satisfiable formulas to another satisfiable one. Lemma
3.4.6. is useful in the proof of 3.4.5.
3.4.6. If, for any n, (A(OC))U is satisfiable, then there exists a natural number
N such that, for any m>N, (A (w(m2)){W is satisfiable.
Proof of 3.4.6. is made by the induction on the number of quantifiers in A (0(n)).

— 16 —
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3.4.6.1. The case in which A(O(>) has no quantifier. ,

Assume that (A(O()))(W is satisfiable, for any n where A (O is of the
form (Hu) () (U (u, t) DA (O)*),

Then, there exists a natural number M, such that (t) (U™, t) D A (O)™) is
satisfiable. From the definitions of T and U(---, ), for any m>M (1) (U (w™, t)
A (O *) is satisfiable, especially, for N the number of all symbols in A (O(®J),

) (U (w, t) DA (OON*®) is satisfiable. Then, (t) (U (w0, t) D A(wn)*) is
satisfiable. Thus, there exists a natural number N such that, for any n >N, A(w()™*
is satisfiable. :
3.4.6.2. Suppose that if for any m, B(O™), with at most k 1—] quantifiers, is satis-
fiable, then there exists a natural number N such that, for any n>N, B (w(n))(V is
satisfiable. ' . '

Let ((x) A (x,0m))W, with (k+1) —quantifiers, be satisfiable for any n. Then

(A (x,0(nd)) (U is satisfiable for an arbitrary natural number n. Therefore, there exists
N such that, for any m >N, (A(x, wim)){02 is satisfiable since A (x, w(™) has only
k—quantifiers. Hence, there exists N such that, for any m >N, ((x) A (x, @(m))D
is satisfiable.
3.4.6.3.6> In the case in which A is of the form B\/D, B & D, BOD, and |B, it is
easily shown that If, for B and D, 3.4.6. holds, then, for A, 3.4.6. holds.
3.4.6.4. The case in which A is of the form (dx) D (x, O(™) is easily treated by
3.4.6.2—3.

Thus, 3.4.6. is proved.
Proof of 3.4.5.
Assume that (A(O)) and (x) (A(x) DA(x')) are satisfiable.
Then, from 3.4.3, for arbitrary natural number n, A (O(m) is satisfiable. Therefore,
by 3.4.6. there exists N, such that, for any m>N,, (A (w{™)){W js satisfiable.
Hence, (t) (U(wNod, ) (U (t, Om)HA (O *) and

() (UwNe, 1) DU, wimd) DA (wind)*) are satisfiable.
Then, (t) (U(wNod, t) JA(a)*) is satisfiable, where a is a free variable.
3.5. From the above proof any formula derivable in X(V2 is satisfiable. Hence, if a
formula F is provable in X, then F(U> is satisfiable. But (<(4)(U7 is not satisfiable,
for, for in any n,

O L+ 1500 + 1) = y(n+ 13 QR + 1 gy + 1)

is false. Therefore, (<,) is independent of 3. Thus, the problem in [ 1 ] is solved.
4. Consequences. ‘

From the result obtained in 4 3, several consequences are obtained,
4.1. The following formulas are independent of.

(@) (b) (A(b) & (x)(A®)DAKE))D(a=b\Vb<laDA()))
(x) (y) x<yDx'<y")
(x) ) GyVz=yVy<x)
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It is easy to prove them.

4.2.

¥, is o —incomplete.

Proof. Denote (<(4) by x) (M)AK,y). AOM™, Om) is valid in 3 for any m and n.
But (x) (y) (x,y) is independent.

1)
2)
3)
5)

6)
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Those are easily shown by the following proposition. Let A (ay, - as,o (m have no
more individual constants than ay,----- ag,If and only it A (a1,---a¢,o0 () ) is satisfiable,
A (éi, ''''' ,;;[ a(n) is satisfiable, where 2 is olm) if a is oln), or a is w(m) if a is
o(m)



