On a Relativization of Quantifiers*®

By
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0. A. Tarski in {119 investigated a relativization of quantifiers applicable to prove
various undecidabilities, which seems to be the standard type of the kind.

A trivial extension of the relativization in [ | ] is obtained as follows; For any
formula F of a theory T, denoting by F° the formula given by replacing every
subformula of F, (x)G(x), or (Hx)G(x), with (%) (P(t,x) DG(x)), or (dx) (P(t,x) &
G (%)), respectively, provided that t is a variable not contained in F. Let F™ be

Pt,a) (- (P(t,an)DF°(ay, -+, an))),
for all free variables a; of F. (t)F(t) is denoted by F(P.

Then, theorem 9 and 10 in {13, 1.5, hold for the above relativization.

In this paper another relativization will be considered, that is in use to prove the
independence of an axiomatic number theory in {272 .

0.1. The relativization to be considered here is defined as follows; For any formula
F of a theory and a binary predicate P(t,x), the formula F° is obtained by replacing
every subformula of the form, (x) G (x), or (3x) G (x), by a formula (x)(P(t,x)D
G (x)), or (Hx)(P(t,x) & G (x)), respectively, provided that t, which is called the
sub-variable of F, is not contained in F. If F contains free variables a;, ---, am, and
individual constant terms, cy,--» c¢n, F is of the following form;

(P(t,a:) D(P(t,a) D (Pt c) DG (Pt en) DF)) )

where t is the sub-variable of F.

(F*, correlated with the formula F containing neither {ree variable nor individual
constant, is F°.) Let (ds) (t) (P (s,t) O F*) be denoted by F(P, where s is not
contained in F and t is the sub-variable of F. Since the sets of free variables and
individual constant terms can be well ordered by a suitable ordering defined in advance,
the transformation from F to F(P) is uniquely determined. Without lossing generality,
it is assumed that all formulas F have the same sub-variable.

0.2. Theory T,
0.2.1. Constants of T(P> are those of T or of the predicate P(.,.).
0.2.2. The set of all formulas valid in T<P> is the intersection of all the sets

including any formula F(P) correlated with a formula F valid in T, and is closed
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under application of the rules of inference in T.

1. From the definition of T(P>, we have the following theorem.

Theorem 1. For any theory and for any binary predicate P(.,.), which is not
contained in T, adding the following axioms to T(F?

() (AP (y, %), () (v) () (P (u,v) D(P(v,%))), () (v) ((x) (P (u, %) D(P(v,x) (x)sPV, %) D

P(u,x))

1.1. TP is axiomatizable if and only if T is axiomatizable.

1.2. If T contains only finitely many individual constants and operation symbols,
T(P) is finitely axiomatizable if and only if T is finitely axiomatizable.

Proof.

1.3, Assume that T is axiomatizable. There is a recursive set S of valid formulas
of T from which every formula valid in T is derivable. Let S’ be the set of the
following formulas;

1.3.1. all the formulas F(P) correlated with the formulas F of S.

1.3.2. the formulas, (v)(@x)P (v,x), () ()®)P (4, v)D(P(v,x) > P (u,x))) W) (v)

() (PWwx)DPE,x)). V. (®) (P, x) 3P (x)))

1.3.3. all the formulas of the forms,

WP G.e), (MNE(PE,x)IPF,sx)),

(7) (1) o) (P (v,x0) D (P (3,xa) DP(y, fn(xas o, xa)) ), o, ete,
where ¢ is an individual constant, s a unary operation symbol, fn (----- ) n-ary
operation symbol, - etc.

1.3.4. From the above definition S’ is recursive, and every formulas in 8’ is valid
in T.

1.3.5. If F is a formula of S, then F(P> is derivable from 3'.

1.3.7. Suppose that F(®> and (FDOG)(P) are derivable from 5.

(Fw) (t) (P (u,t) DF*) and @v) (t) (P (v,t) D(FDG)™) are derivable from S'. From
1.3.2, the following formula is derivable from S'.

() (P DOF* & (P DDFEDGC)INHDW (P (v, t)DF* & FDG)™) V. (1)
(P, 0)DF*) & ) (P, ) D(FDIG) D) (P (u,t) DF* & (FOHG)™)) where u and
v are neither in F*, nor (F2OG)™* Then, ‘

() (P (0, t) DF") & () (P, 1) D(FDG)H)

D(HW) @) (P (u,t) DF* & (FOG)Y™)
is derivable. Therefore (Gu)(t)( P (u,t) DF* & (F D G)*) is derivable from 5.
Finally, (du) (t) (P (u,t)D G*) is derivable from S, that is, G(# is derivable from 5'.
1.3.8. We consistently assume that the rule of detachment is the only rule of in-
ference. 3 Hence, every valid formula of T(P> is derivable from 5.
Thus the axiomatizability of TP is established. |
1.4. Suppose that T(P) is axiomatizable. There is a recursive set M' of formulas
valid in T(P) from which every formula valid in .T(PD is derivable. Let M be the set
of all the formulas F*, which is obtained by replacing P(x,y) by x=x & y=y in the
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formulas F(P? of M/, and of (x)(x=x).
1.4.1. Given any formula F valid in T, the correlated formula F(P) is derivable
from M’, and, moreover, if a formula F(P) is derivable from M’, then by the corres-
ponding process, which is given by replacing P (x,y) by x=x & y=y, the correlated
formula™ F is derivable from M. o
Thus, any formula valid in T is derivable from M, since (x) (x=x) and® F implies F.
1.4.2. If A is derivable from the set of the formulas B; (> correlated with the
set of the formulas B; wvalid in T, then the formula *A correlated with A is
derivable from the set of the formulas *B; correlated with B(P>, IHence, if A is valid
in T, then the correlated formula *A is derivable from the set of the formulas *F
correlated with the valid formulas F(P> valid in TC(P), which are in use to imply AP,
corresponding to A. From the above definition, as *F is valid in T, ™A is valid in T.
Thus, any formula derivable from M is valid in T.

From 1.4.1 and 1.4.2, the set of all formulas derivable from M is the set of all
formulas valid in T. We have the axiomatizability of T.

In 1.2, if S is finite, S’ is finite, and M is finite for M’ which is finite. The-
refore, 1.2 holds. Thus, Theorem 1 is obtained.
2. Theorem 2. For any theory T and P(.,.) a binary predicate not contained in T,

T(P) is essentially undecidable if and only if T is essentially undecidable, provided
that (x)(y) (P (xy) V P(y,%)) and (x)(y) (z) (P (x,y) D (P (v,2) D P(x,2))) are valid
in T(P,
Proof. From further consideration along the line of 1.4, it is easily seen that T(¥J is
interpretable in T, and that the consistency of T implies that of T(P),

Now, let T be inconsistent. Then two formulas A and ~ | A are valid in T and,
AP and ( JA)PY are valid in T.
(TTAY®) is of the following form,

(x) () (P (x,t) D (T 1A)).

From the validity of the formula (x)(y)(P (x,y) V P(y,x)) and (x)(y) (z) (P (x,¥y) &
(P(y,z) P (x,2), x)(Ht)(P(x,t) & |(A*)) is derivable in TP,

Thus, AP and ~[(AM) being valid in TP, T(P) is inconsistent. We have the
proposition,
2.1.1. T® is consistent if and only if T is consistent.
2.2. Moreover, from 2.1, similarly to {13, p. 2829, it is shown that, TP is
essentially undecidable if and only if T is essentially undecidable.
Thus,

Theorem 2 is proved.
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