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On a Problem of Elementary Number Theory*

By

Kempatiro OnasI

§ 1 Introduction

The purpose of this paper is to present a solution of the following problem in

p)

(p. 279, footnote) ;Is the formula (A) provable or independent in a logical
system of first order with axioms, (J1), (J3), (<y), (<z), (<3), and the axiom

(A)
(J1)
(J2)
(<1)
(<2)
(<3)

(1)

a<ha'=pVa’<b

a=a
a=b2(A(a)3A(b))
“la<a
a<b&b<{cDa<lc
a<a'

A@)&(%)(A(%)D (AE )T A(a)

The formula (A), as Hilbert and Bernays pointed out in [IJ, is provable in

the system with bound predicate variables, and its proof is as follows (they didn’t

show it in [I).)
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Proof of a<b=EHF) ()(F()DFEN& F(a)&F(b))
Definition F,(c )Déf“ a<c

Fo(e)DE ()

a<lhb2D(x) (F(x)TF(E)) 1.1.2
a<b2F.(b) 1.1.1
a<bDF(a) (<1)
a<bD(z) (Fo(x) DF,(#)) & 1Fo(a)&F.(b) 1.1.3, 1.1.4, 1.1.5
albEF) () (F(x)22F®)) & 1F(a) &F(b)) 1.1.6
F) & (2){(F(x)DF &) DF(a) ¢y
@R () (F(x)DF )& F(a)&F (o)) 1.1.8
(dF) () (F()DFEN&F(2a)&F(0))Da<o 1.1.9
Definition P(b)’?é‘(ng(x)(F(x DFE )& TF(2)&F(b))Da<h

P(o)
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(@EF) ((2)(F(x)DF ())& 1F(a)&F b))

Definition Fs (c) j?:if’Fi (e)Ve=>b

Fy (b")DF, (b) 1.1.14
Fi(W)D(e=bD2F () (J2)
Fy(b")D(z=bDF:2 (+)) 1.1.16
() (Fy (x)DF ) DF (2)DF, (+)) 1.1.14
Fi (b")&(z)(Fy (x)DF (! )ND(x)(Fy (%) Fy () 1.1.17, 1.1.18

@AF) () (F(x)DF )& TF(a)&F (b))

()Y (Fy (2)DF, ())& |Fy (a)&F; (b) 1.1.13, 1.1.15, 1.1.19
(x)(Fy (x)DF, (# ))& 1F; (8)&F,y (b)

D) (Fo (2)DF, ()& [Fy (a)&F; (b))Va=h 1.1.14
@A) () (F()DFE )& TF(a)&F(b'))

SHP) () F () DF@EN& F(a)&F(b)Va=b 1.1.20, 1.1.21

P(b)DP(O) 1.1.21, (<3)
P(o)&(2)(P(2)2P (X)) 1.1.12, 1.1.23
P(b) 1.1.24
a<lb=EF)((2)(F(2)DF @ )& F(a)&F(b)) 1.1.7, 1.1.25

Proof of (A)
a<lb' D(x)(F3(2)DF3 ()& [F3 (a)&F; (b")

Definition Fq(c )DTst (¢)y Ve=b

Fs ') DOFs(b) 1.2.2
(2)(F3 (x)DF3 (W )D(Fs (x)DFy () 1.2.2
Fs(b)D(x=bDFy *)) (Jz), 1.2.2
(z)(F3 (2)DF3 U N&F®)D(2)(Fy (2)DFy (¢)) 1.2.4, 1.2.5
a<lb/ D(2x)(Fy (x)DFy ()& TF3(a)&Fys(b) 1.2.1, 1.2.3
a<lb (%) (Fy (2)DFy WN& 1Fy (@)&Fy (b)) Va=b 1.2.2, 1.2.7
a<b' DEF)((x)(F(x)DF ))& 1F(a)&F (b)) Va=hb 1.2.8
a<b'Da=5hVa<bhb 1.2.9
a<{b (%) (F5 (x)DF; ())& 1F; (a)&F5 (b) 1.1.26
Definition Fg (C)D%:f‘FS (eH)Y&b<c
a<bO(x)(Fg)(x)Fe ))& 1F5 (a)&Fg (b)) 1.2.11, 1.2.12
h<la' d(b=aVyb<a) 1.2.10
a<{b(b<<a’Dalia) 1.2.14, (<)
a<bh 2 b<a 1.2.15, (<4)
a<lbD(z)(Fe (x)DFs (M N&(TIF5 () V ib<a') &Fs (b')

1.2.13, 1.2.16
a<b DEF()(F(2)ZFE )& 1F@) &F((b')) 1.2.17

a<b 2al<b’ 1.2.18, 1.1.26
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1.2.20  a<{b' Da’ =b"\/a’' < b’ 1.2.10
1.2.21 Definition F(a, b)pz";f'a<b3a’=b\/a’<b

1.2.22 F(a.,b)DF(a,b) 1.2.20
1.2.23 F(a,o0) 1.2.21
1.2.24 F(a,o0)&(z)(F(a,x) D F(a,x)) 1.2.22, 1.2.23
1.2.25 a<{pba' =p/a'<b 1.2.24, 1.2.21

From the above proof we naturally agree with Hilbert and Bernays in the
point that the independence of the formula (A), as they suggested in [ I, can be
proved only by close investigations into the deductive formalism, provided that (A)
is independent in the system. For, it is conditioned by limitations of our formalism.

The independence-proofs of such formulas, which seem to lie on the border line
of formulas, are sometimes succeeded by uses of Godel’s theorem?®> that sufficiently
strong formal systems cannot prove their own consistency ; but in the present case
it seems difficult to find any suitable relation between our problem and Godel
theorem, and hence, we don’t adopt that method. The method used here is one
by examining formal proofs step by step, for which Gentzen’s system L. K is
convenient. In this paper we shall consider our problem in the formal system
consisting of LK, the inference of induction and several axioms, which is easily
proved to be equivalent to the above system.

& 2applies to the exposition of the underlying logical system used later.
a

In £ 3 a theorem concerning to the axiom of induction will be proved. In & 4

the independence of (A) and its cosequence will be proved.

§ 2 Logical system and the inference-

figure of induction.

The inference-schemata listed in this & are due to L K in [ 2.

2.1 Symbols.

2.1.1 Constants.

2.1.1.1 A particular individual. 0
2.1.1.2 A function. '

2.1.1.3 Predicates )

2.1.1.4 Logical symbols

&, v, 1, D0, =, (), (@
2.1.2 Variables.
2.1.2.1 Individual variables

a, b, C, e s, Xy Y, T, e
2.1.2.2 Predicate variables.
A, B, C, cooeeeneen

2.2 Notions.
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We shall use a, b, «-oooeoveee A, B, e as metamathematical symbols too,
since no confusion is likely to occur.
2.2.1 Terms.
2.2.1.1 Individual constant and individual variables are terms.
2.2.1.2 If ais a term, then so is a’.
2.2.1.3 The only terms are those given by 2.2.1.1 and 2.2.1.2
2.2.2 Formulas.
2.2.2.1 Tf A is a predicate and #; and #, are terms, then A(#;, #;) is a formula.
2.2.2.2 If A and B are formulas, then

A&B, Av B, A, ADB, A=B, (x)A(x), (d=)A(x) are formulas,

2.2.2.3 The only formulas are those given by 2.2.2.1 and 2.2.2.2.
2.2.3 Sequents.

2.2.3.1 If Ay, oo , Am, Bp, e , B, are formulas, then

Ay, e C Ap —> By, e , B,
is called a "sequent.”
2.2.3.2 In2.2.3.1, Ay, e , A,, are called "the antecedent” of the sequent,
and By, oeeeeeeees , B,are called ""the succedent” of the sequent.
2.2.4 Inference-figures.

If Ay, ~oeeeeene A, , B are sequents, then
A, oo A,

B

is called "a inference-figure”, and Ay, -, A, are called "the upper sequents”

of the inference-figure, B "the lower sequent”.

2.2.5 Proof-figures.

2.2.5.1 Every sequent in a proof-figure is an upper sequent of an inference-figure,
except the sequent called "the end-sequent”.

2.2.5.2 Every sequent in a proof-figure is an upper sequent of at most one inference-
figure.

2.2.5.3 In any proof-figure there is no sequent such as arrivable again to its own
sequent in tracing sequents to its lower sequents.

2.2.5.4 Sequents in a proof-figure, which are not lower sequents of any sequent,
are called "the beginning sequents” in the proof-figure, where beginning sequents

must have such a form as A —> A, or be an axiom.

2.3 Inference-schemata.
2.3.1 Inference-schemata on structure of sequents.
"Thinning”
. r — /AN . r — A
in antecedent —————_"-""~ in succedent AN

A,' I — A r — A, A
TContraction’
. A, A, T — A . r - A, A, A
in antecedent : ! =_ in succedent : tte—

A, T — A I — A, A
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"Interchange!”

i M M » > . —_ L. , .
in antecedent L A B, 4 in succedent r-A. B é

A
A) B» A; r—4 I'— A; 14) H A

In these inference-figures A and B in the upper sequent are called ”the sub-

formulas” of the inference-figure, and A, B in the lower sequent are called "the
chief-formulas” of the inference-figure.

2.3.2 "Cut”

r—->A, A A, T—>4
r, = —> /A, 4
2.3.3 Inference-schemata on logical symbols.
r—-n. A r—>/A, B A. T =N
Us I—>A, A&B VA D) —eB, oA
(2) B, m—=A
' A& B, I'—=>A
r—n, A A, I'=>A B. I'=A
s (1) r—>/nN, AvVDEB OA AV B, I'>A
r—->AN. B
(2) 7 SA avE
T%A) A(a’) . ij(t)y F%A
AS  TOAT(0OAGY M oA, ToA
where a is a free variable not ‘ where ¢ is an arbitrary variable.
contained in the lower sequent. |
a is called the eigen-variables
of this inference-figure. ‘
Q r—>n. A(t) A(a). T—A
EA -
B oA, @ AGH @A), T=A

. - where a is a free variable not contained
where ¢ is an arbitrary term.

|

|

' in the lower sequent. a is called the
eigen-variable of this inference-figure.

A, >N r—n. A
A, '>A. B r—->n. A B, m—=>4
FS r-A, ADB FA ADB, I'y, 7=/, 4

In the above schemata, the formulas denoted by A, B, A(a) or A(:) in the
upper sequent are called "the sub-formulas” of the inference-figure, and the formulas
denoted by A, A& B, AV B, 1A, (x)A(x) or (Hx)A{x) in the lower sequent

are called "the chief-formulas” of the inference-figure.

2.4 Inference-schema of induction.
r—/A. A(o) A(a), T=A. A)
r—>N, A(t)

Where ¢ is an arbitrary term, and a is a free variable not contained in the
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lower sequent. a is called the eigen-variable of this inference-figure. A(a); A (a")
are called "the sub-formulas” of the inferencefigure, and A (¢)is called "the chief-
formula” of the inference-figure.

2.5 We shall consider a formal system with the inference-figures 2.3, 2.4
henceforce. Evidently, adding (J71), (J'z), (<71), (<’5), (>'3) as the axioms

to that system, we obtain a system equivalent to the system for which our problem

arises.
() ~a-a
(J"y) —~a=bD(A(a)2A(b))
B (<) —la<a
[ (<75) —a<lb&b<calc
L (<s) —ala/

2.6 There is another neat inference-schema (I’) equivalent to 2.4

(1) F(a), r-—=A. F()
F(o), r—A, F(t)

The equivalence is proved as follows ;

F(a)., r—>A. F')

r—A. F(o) F(o), r—>A. F(t)
r—A, F(t)
FF(o) —F(0) F(a). r—>A. F@')
F(o), F(a), r—A, Fa)
F(o). r->/A. F(o) F(a). F{o), r-A. F(')

F(o), r—>A, F(t)
But we take the unrefined form 2.4, because this is suitable for our purpose.

2.7 Let LK, be a system cousisting of L K and B’ , and L K; be a system L K,
+2.4.

$ 3 A theorem on the inference-schema cof induction.

5.1 A sequent & is called "provable” if there is a proof-figure, the end-sequent of
which is S, and a formula A is called "provable” if there is a provable sequent of
the form —A.

3.2 A proof-figure P is called to be "reduced” to a proof-figure Q, if the following
conditions are satisfied.

3.2.1 The end-sequent of P is equivalent to the end-sequent of Q, in the sence
that both of those sequents are provable in L K; or neither of them is provable in
L K.

3.2.2 In Q, there is no inference-figure of the form 2.3.2, 2.3.3 below any
inference of the form 2.4, excepting the inferences of AS, ES, and equivalent

transformations with respect to the quantifiers of the formulas in the end-sequent.
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3.3 In 3.2, Q is called "the normal proof” of P, and it is called " a reduction”
to give a normal proof.

3.4 In this§, the following theorem will be precved.

Theorem. ]. Let a normal formula 4 be of the form
(xi ) (xn ) F(Kl ............... , Zn )

If A is provable, then there is a normal proof of A.
By "normal” is here meant that all the quantifiers stand at the beginning, with no
negatives between or in front of them, and have scopes extending to the end of the
formula.
3.5 In the following, we will prove this theorem by the mathematical induction on
the grade, which is the sum of the numbers of 2.3.2, 2.3.3 contained in the
proof-figure, and hence our theorem will be proved if we can give a reduction for
each 7 dividual inference-figure of 2.3.2, 2.3.3 in P. We may assume thereby, that
there is only one inference-figure of 2.4 above the given inference-figure.

We shall mainly give only reductions without full explanations of it, for
reductions are given sufficiently in detail.
3.6 If the variable # of the chief-formula of a inference of 2.4 is a constant, we
have an equivalent proof without the inference of 2.4. It can be seen as follows ;
Any constant can be written O D (O D =0, O/ ,0", ---orveerne )
3.6.1 The case, n=1.

Ala), r—=n, A@)

r—=>/, A(o) ACo)., r—=A. Aldl)
r., I'=>A, A, A(")

r—n, A(")
3.56.2 Suppose that for n=F the above property is true.
r—nN, A(o) Ala), r—-n, A@) Ala), r—A, A@")
r—aA A (0D A(o&)y, r—=>A. A(olk+1))

r. r—->A, A. A(o&+1D)

r—=A, A(ow+12)
Thus the above property is true for arbitrary n. Therefore we need consider only
the cases where ¢ is a variable term.

Reductions.

3.7 The case, where the inference-figure R is a cut, can be divided into two cases,
3.7.1 and 3.7.2.

3.7.1 The chief-formula of 2.4 is not the sub-formula of R, as follows; 3.7.1.1—2.
3.7.1.1 in left
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r—A, B. A(o) ACa), r-A. B, AQR")
r—-A. B. A(t)
TN, A(t). B B. n—4

r, =—=>A, A(t), 4

3.7.1.2 in right
B. n—>4, A(0) Ala), B. 7—=4, A")

=/, B B, m—>4, A(t)
F’ 7;,§A) A’ A(t>

3.7.1.3 "1 gtands for a proof-figure without 2.4, which is easily seen, or a
well known method of changing the free variables.

Reduction of 2.7.1.1
Ala), T—>A, B, Aa")

b is a variable not contained in I",A%,,4,A(a)

r—>A. B, A(0) A(b), r=A, B, A(b)

r—>A, A(o), B B, m—4 A(b), T—>n1, AD'), B B, 74
r, i=>A, A(0o), 4 CA(b), 1, oA, A, 4
r, =N, 4, A(0) A(b), I, =N 4, A

l", ﬂ">A) A!‘ A(t)

r, ==A, A(t), 4

Reduction of 2.7.1.2 :
A(a), B. =—>4. A@)

b is a variable not contained in T1,A. 7 . A,A (a)
A(b), B, =>4, (b")

r—-., B B, A(b), =—>4, AD')
r, A(b), 7—=>A, 4, AG)

r—>A. B B, 7—>4, A(0) -
r, w4, A0) A(b)ar, mon. 4, Ab)

.[_’ ’ 7{7 —%A’ A b4 ,{‘_/l( t )
3.7.2 The chief-formula of 2.4 is the sub-formula of R.

r—5N, A(9), A(a), r—n, A@N
r—n, A(e) ACt), 74

r, #—>/A, 4

3.7.2.1 FEither A or 4 has elements.
SHPPOSG A; is not empty, and 1et A be A*, B

Reduction is as follows.
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3.8 The case, where R is a inference-figure of US, can be divided into four cases,
3.8.1—4.

3.8.1 The sub-formulas of R is not a chief-formula of 2.4.

Reduction is analogous to 3.7.1.

3.8.2 The left sub-formula of R is a chief-formula of 2.4.

r—A, A(o) Ala), r—=A, A@)
oA, AC(E) ) . I'>A, B
r—/A, A(t)&B

Reduction.
r—>N, B
A(a), T—>A, A) A (a) T>AA (a)
r—~A, A(o) r—A, B AQ@), r—,, A@)H&B
r—-N, A(o)&B A(a)&B, >N, A@)&B

r—n, A(t)&B
3.8.3 The right sub-formula of R is a chief-formula of 2.4.

Reduction is analogous to 3.8.2.

3.8.4 Both sub-formulas of R are chief-formulas of 2.4.
r—A, A(o) A(a), T—=A, A@) Tr—A, B(o) B(b), =>4, B(b')
r—A, A(t) r—/A, B(s)
r—A, A(t)&B(s)

Reduction is as follows.

3.8.4.1
r — A, B(o)
A(a), >N, A@’) A(a), r-A, B(o)
r—>A, A(o) r—>/A, B(o) A(a), T—=A, A@)&B(0)
r—A, A(o)&B(o) A(a)&B(o), Ir—A, A@)&B(o)
r-N, A(t)&B(o0)
3.8.4.2
| A@), >N, A@) BO),r—>A,B((b)
BM), I >A.B()  A(e).r—oAA?) BW),r=ALB (@)
rﬁﬁ,ﬁl(o) . : e ) - T o ) o
o A(e),&B(d), r—> A(e)&BW) .~
B(d),r—A,A() B(d),r->A,B(d") N, A A.B(d)
B(d), r—/, A(0)&B(d") A()&B), T >N, A()&B(d7)

AB&B(),r—>A,A(0)&B() AE)&BW),AN&B(),r>A,A)&B)
A(8)&B(d), r—A, A(t)&B(d)
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3.8.4.3
3.8.4.1 3.8.4.2
r—nN, A(t)&B(s)
Where ¢ is not included in B(d), r, A, and d is not included in A(z), I, A.
3.9 The case UA. There is only one possibility such as follows ;
A, =N, D(o)  D(a), A, I'=A, D@)
A, =/, D(¢)
A& B, r—>/, D(t)
Reduction ; let b be a variable not contained in 4, B, D(a), I, A.
D(a)y A’ r—‘éﬁy D(a/)
D(b), A, T—=A, D)
A, D(b), r—A, D)
A, T—=A, D(o) A&B, D(b), r—>A, Db
A&B, r'—=/A. D(o) D(b), A&B, r—>/, DO’
A&B, T—>A, D(t)
3.10 The case of OS is divided into two cases, 3.9.1—2.
We shall consider only the case (1).
3.10.1 The sub-formula of R is not the chief-formula of 2.4.
This case is trivial.
3.10.2 The sub-formula of R is the chief-formula of 2.4.
r-A, A(o) A(a), r—=A, A"
r->A, A(t)
IWQA) A( £ )\\/B
Reduction ; let b be a variable not contained in I, A, A(a)B.
A(a)’FW>AX’A(a/) B%B
A(b), r—=A,AD) B, r—/A, B
r—A, A(o) A(b), r—>,.AMB)\VB B, r->AN,Ab)VBEB
r—n, A(o)VB A(b)VB, r—A, AB)VB

r-, A(t)\VB

3.11 The case AS can be dividwed in two cases, 3.11.1—2.
3.11.1 The sub-formula of R is not a chief-formula of 2.4.



12 Kempatiro Ohasi

r-—A, B(b), A(o) A(a), r—=n, B(b), A@@)
r—A, B(b), A(Z)
r—AN, A(Ct), B(b)
r—-n, ACt), (z)B(x)

Reduction is easily given because b is not included in I, A, A(?).
3.11.2 The sub-formula of R is & chief-formula of 2.4.

r-—-/A, A(o) A(a), THA, A@")
r—->-A, A(b)
r—n, («)A(x)

Two cases arise; 3.11.2.1—2.
3.11.2.1 If (#) A (x) remained in the end-sequent, then the end-sequent must be

of the form
—> (X) A(x’ )

and the proof-figure from the sequent in problem to the end-sequent is as follows ;

r—A, (x) A(x)

e (2) Az,

Since neither I nor /\ contains the variable & and (%) A (x) is operated only by
US, and then (%) A (%) has no variable contained in any other formula of the
above proof-figure. Therefore, taking suitable variables b, ¢, we obtain a reduction.
It needs consider only the inference of 2.4, which is in problem now, and then it is

enough to present the following proof-figure.

A(b), r—/, A
1 |
— A(o0) A(b) —» - A7)

- - A(e)
—(x) Az, )

From the condition of the theorem,
> (x)YA(x, ---) is equivaleut to (x)--A(x, --)

3.11.2.2 (xz)A(=x) is eliminated in a place, as follows ;
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3.11.2.2.1
r—n, A(a)

r—n, (zx)A(x)
| |

r{ > /ANy, B B, my = A4
ry, 71 —=>N1, 41

where B is generated from (%) A(x).
3.11 2.2.2
r—n, A(a)
F%A) (Z)ALl(X)
i |

ny—>A4y, B B, T'1—>4q

Ty, I'y—>4dy, Al

B is generated fom (x)A(x).

Reduction of 3.11.2.2.1.
Four cases arise, 3.112.2.1.1—4.

3.11.2.2.1.1
In the proof of B, mq1->47, the right upper sequent in 3.11.2.2.1, (%) A(x)

represents, by 2.3.1, as follows.
To—> Ao

(%)/;‘L(X), To>Adg

Reduction.

Iy, 7p—=>A1, A1
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3.11.2.2.1.2 In the proof of B, #—>4, (2)A(x2)->(z)A(x)

is a biginning sequent.

(x)A(z)—=> (x)A(x)
!

(2)A(x), 7o Ao, (2)A(%)
v

B’ 7:1'%/11, C

where B is generated from (x) A () in the antecedent, and C is generated from

(2)A(=%) in the succedent.

Reduction.
r—=,, (z)A(xz)
r, ™=A, 4% (x)A(x)
}
r, m—=>/, A44¢
3.11.2.2.1.3 In the proof of B, m —>4¢, (x)A(x) is derived from A(a) by UA.
A(b), m=>4
() A(x), m>a_
¥
B, m >4y
Reduction.
A(b), =—4
7*, A™* has no variable common in F, A,
r-A, A(a) A(a), m*—>4*
[-v’ H*%A, A:;:
r, ™=/, 4* r, ©™oN, 4*
r, ™A, 4%, (2)A(z) (x)A(x), I, TN, 4*
S v
T'I’ 77»'*-9A17 A*, B B, I—'s Ty ;k“‘?Ay Al*
v l
rl) ﬁ*, *->A1) 41*’ B B’ FI’ Kl*—-)AI’ Al*

Iy, Y, Ty, T RNy, Ay, Ny, AT

ry, mp >0, 41%

(a)

'y, mp >0, 44
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3.11.2.2.1.4. The formula generated from (z) A (%) is derived from a formula

independent of (x)A(x).

B 0y o> Ao
Bo&By, T2 Ao

B, 7y —>4q4

Tn this case, in the proof of I'y+~>/\;, B, there is the following proof-figure.

I'o>No, Bo oMo, Bi
oMo, Bo& B1
}

I ~>Al ’ B

Therefore, we have a reduction, as follows ;

T oo, Bo Boy To 4o
oy T o=Lo, Acgﬁ

!

r{,my—=>MA1, 41

3.11.2.2.1.5 In the proof of B, 7;->4¢ there is a formula, which contains

(z) A(=z) but is not generated from it.
Bi, T4

{

B, ©{—> A1

In this case B;~>B; is a biginning sequent or is derived in the figure by 2.3.1,
"Thinning".
The former case is analogous to 3.11.2.2.1.2, and the case 'thinning" is analogous

to 3.11.2.2.1.1.

In the above reductions, since the eigen-variables are eliminated in the lower
sequents, when the variable-conditions really affect, the variable-changes in (a) are
guaranteed. For, ', 7, /\, 4 in any inference of 2.3.3 are not changed when the
sub-formulas aer operated, and in the inference 2.3.2, (z) A(z) is not operated.
Thus we have a normal proof of the inference UA.

The case 3.11.2.2.2 is analogous to 3.11.2.7.1.
3.17 the case EA, 3.13 the case AA, 3.14 the case ES can be discussed analogously.
3.15 In the case NS, it is analogous to 3.10.

3.16 The case, where R is one of NA, is divided into two cases, 3.16.1—2.



16 Kempatiro Ohasi

3.16.1 The sub-formula of R is not the chief-formula of 3.2.4. So the
reduction is easy.
3.16.2 The following case, where the sub-formula of R is the chief-formula of 2.4,

is not s> simple.

r—>nN, A(o) A(a), r—A, A@")
. r—»nN, A(t)
TH1A(E), T'—>A

In this case there is likely no simple reduction, hence we shall consider how A
(t) is treated thereafter. There are eight possibilities, cut, OA, UA, EA, AA,
NS, FS5, FA, since A(#) is not contained in antecedent.
3.16.2.1 "cut”

A, 1AL 1A(E), T4
r, #—=>/A, 4

Assume that ¢ is b¢2. Let A*(b) be A (bU®),

Reduction is as follows ;

n>4, A(0), >/, JA(t) r—-A, JA(t) A(a), =—4, A@’)

FoorosAL 4. AC&AC) A& AW I r oA 4, AD)& AW
r, z->A, 4, A(»)& 1A(¢)

3.16.2.2 The case OA is divided into three cases.
3.16.2.2.1 Only the left sub-formula of R is the chief-formula of 2.4. Let b be a
variable not contained in 7", A, A(a), B.

Reduction is as follows ;

Ala), r—=A, Aa") B, I'—=>A
: r—n, 1B
A(b), r—=A, ADb) A(b), r—A, 1B

roA, A(0)  r—A. TIB Alb), Tof, AGIL 1B
A(b)& 1B, r—>A, AMbB)& B

r—->/A, ("1A(o)V B) WCHA)Y VY B), 7oA, T1(TTAG") 4 B)
r—/2, 1(1A>(£)V B)
[ ACt)V B), T—>A

In this case a new NA yields again, and hence it needs considerations of more

steps of the proof-figures.

—_ 16 —
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3.16.2.2.2 Only the right sub-formula of R is the chief-formula of 2.4.

Reduction is obtained similarly to 3.16.2.2.1.

3.16.2.2.3 Two sub-formulas of R are the chief-formulas of 2.4, and reduction is

as follows ;

In, Alo)  A(a), ren, A@) r=AB(o)  B(b),r—=A,Bb)
r-N, A(t) =0, B(s)
1ACE), T—A TIB(s), I'—>A
AV T IB(s), I—=>A

Since the reduction is simple, when ¢ and s are generated by the same
variable, and when at least one of them is a constant, we shall consider the case,
where ¢ and s are generated from different variables. Let ¢ he a variable not
contained A(a), B(b), r, 7/, and d be a variable not contained in A (a),
B(b), r, A. Rediction is obtained as follows ;

r—/, B(o)
r—>nN. A(e) r->A, B(o) A(a). r—>A, A@’) B(o), r—A~A, B(0)
v

A(a)&B(o), =/, A@)&B(0)
r—=A, 1(1A()V 1B(0)) TICNA@ Vv 1B(o)), r—>/A, ((JA@) 4 [B(o))
r—nN, 1 1ACtYv 1B(0))

B(b), r—

r—/, A(o) A, B(b”) Ale), r—=A. Ay B(), r—A, B(d)
B Ny vy A P TIB@)) re
, B(d):i o A(O)&B(ld) L) A, ICIAC) Y 1BW@)
(t — B (d’ —
A:)&B( ), T 4, A(0)& B(d) A P TIBE@ ),
THCTA)Y ) v 1B(d), > WCTACe) Y 1B, T
A, JCTACe) Y 1B () A, 1CJA) Y 1B(d)
r—A, 1(1A(t)V B(0)) THNA@ VY TIB), A, 1 TAW@W VYV B(Wd))

r—A., 1(1ACeYV 1B(s)
TTHCTACE)Y VYV IB(s)), I'=A

Here again NA yields, hence we must consider of more steps of the proof-figures.

3.16.2.% The case UA is as follows ;

r—/A, A(o) Aa), >N, AQ@)
r—AN, A(t)
TJA(E), TN

T1A(EY& B, TN

J— 1’17 J—
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Let b, be variables not contained in A(¢), B, I, A.

Reducticn is given as follows ;

Aa), T—A, AQ@)

TIB-TIB A, Toh, AG)

r—-A, A(o)

ALYV TIB, r=>A. A(M)V B

ron, TICIA&B)  1CIAG)&B), ToA, (1AM rTB)
ron, A &B)
(A& B), A

The situation is the same as in 3.16.2.2.3.
3.16.2.4 the case EA, and 3.16.2

in 3.117.

3.16.2.6 The case NS. Reduction is trivial.
3.16.2.7. The case FS.

Reduction is as follows ; Let b be a variables not contained inA(a), B, I', /.

.5 the case AA require no more investigation than

A(a), r=A, B, Aa’)

B~ B A(b), T4, B, A
r—>/, B, A(o) A(b) VBfT—>A’B9A.(b/)V,B ]
: m,i H
r—>AN, A(o)v B AMIV B, T=0, AB)VE
r—A, JA(c)DB TTA(B)YDB, T=A, TAMB)DB

r—=A, JA(t)DRB
3.16.2.8 The FA, as follows ;

r—4, B(o) B(a), 7—4, B@")
T >4, B(2)_
r—>nN, A TIB(2), m4

ADTB(t), ', m—=N, 4

Let b be a variable not contained in A, B(a), I', A, 7, 4.
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Reduction is obtained as follows ;

A, Ty =N, 4, A B(b), ', 7oA, 4, B(b")

r—A, A m—>4, B(o)

A&B®M), 1, moA, A, A&BD)

rorsA, 4, (ADTIB(0)) TADTIB()). M n A 4, ARG
r, #=/N, 4, (AD 1B(t)) 14
TUADTIB ), I, moA, 4

By the above considerations, it is seen that NA is transferred to other inferences, or
to a new inference NA. RBut in our case the end-sequent is such as, and hence NA

must leave to other inferences at last.

3.17 The case FS, as follows ;

A, =/, B(o) B(a), A, r—>A, B()

A7 FQA’ 13.(,1,;),,
I'—/AN, AZB(t)

Reduction is obtained by the method in 3.16.2.7.
3.18 The case FA, as follows ;

r—=A, A(o) A(a), 7—=>A, Aa))
r—n, ACt) , B, =>4

A(L)DB, T, ==A, 4

Let ¢ be a variable not contained in A(a), B, 1, A, 7, 4. Reduction is

transferred to 2.16 as follows.

A(a), r—=N, A@") B, m—=>4

variable

ALM\F%A,Awﬁ

B, =—4
r—->A, A(o) 7m—=>4, 1B

A& IB, I, A, 4, A& 1B

r, moA, 4, 1(AG)DB)  WA(B)OR), Iy 7oA, 4 (AWC)DIE)

P meA 4, HAGHDE) by 1.4
jj(lél(t):B)ﬁ r? 77:”9&? A

— 19 —
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Thus the inferences of induction can be put back by one step, and then we

obtain our theorem.

A Proof of independence of the formula (A) and its result.

4.1 In € 3 we obtain the way to reduce a proof-figure of an arbitrary normal formula
of the form (%, ) () A (%1 +.%,), and therefore, if a proof of a normal formula F of
that form contains no cut, then in its normal proof all inductions are concerning

only the variables of F. For example,
L Fub,e),Fuv,c)=>F(o,b’,¢’) F(a’b’,e”) F(ub,c’), F (u,v,e)—>F (a’,b%,c”)
| F(u v, ¢)>F(u, o, ¢) F(u, b, ¢/)=>F(u, v, ¢)>F(u, b/, ¢/)
:“>F(J,V, o) F(u, v, C)~->Fﬁ(u, v, c’)

—F(a, v, w)

where F (a, b/, ¢’), F (u, b, ¢’), F(u, v, ¢)—F (a’, b/, ¢’)are provable,
without any inference of 2.4.
4.7 But it is not the case when cuts are contained in the proof-figure; for, there
may exist inferences of 2.4 with respect to the formulas which are eliminated by
the cut, IYor instance, in 4.1,
F(a, b’, ¢), F(u, b, ¢), Fu, v, ¢) =»F (a’, b/, ¢/)

may be provable only by inferences of 2.4.

Now, if in a normal proof there is a inference of 2.4 with respect to the
variable of the formula in the end-sequent above a inference of 2.4 concerning a

formula eliminated by cut, reduction is as follows ;

B),r;1 =/ ,B((b), Ale) Aa),B(b), r1—>A ,B(b"),A@)
r-A, B(b), A(?)

¥
rioN, (Ar), B(e)  B(b), I's =0, ACe), B/ (b))
=N, ACt), B() B(s), m—>4

i, E%A’l» 44(t>’ 4

The proof is reducible to the following proof-figure;

l

A(a), B(b), ri—=A, BOb), A@)
,[’1 —>A,17 A<[)7 B(O> A(C)’ (b>a r—>A_X9 B(b/)a I/L(C/)

! i
Ale)s I = A), A@®), B(o). B(d), A(e), =l A(), A@), B(b))

Ale), ri—=A, A, A(2), B() B(s), m—4
ACe), Ty, m—=>N;, , 4A(E), A

— 20 —
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ri—=~A;, A@®), B(o) B(b), ri—>A;, B(b). A(o)

riy—=n;. A{t)A(), Blo) B(b) Iy—=>/A, A)., A(o). B(b")
ri—>N;, A(), A(o), B(s) B(s), 7=V
rj ; 7Z“>Al9 A(t)7 fl(o>) A

[_'1 ; 7I‘*>A[, A, A(f\), 44(0> /“1<C)7 [1[7 E*\)A[ 4, A(t>’ A(C,)
Iy, m=>N1, 4, A(), A)

Where ¢ is a variable not contained in A(a), A(), B(d), B(), ', A, 7, 4.
By this reduction we can sharpen Theorem [, that is, the following theorem is
obtained.

Theorem. 2 For any normal formula of the form (v; ) (%, )---(x, ) F (%, -%,) which
is provable in L K|, there is a normal proof, where all inferences of 2.4 with
respect to the formula eliminated by cuts are above other inference of 2.4.

4.3 Before our independence-proof we shall prove several properties of the formula
(A). 4.3.11.

Let FF(a, b) denote the formula a<(bh Da’ = b \/a'<b.

4.3.1 If F(a, b) —F(a', b) is provable in LK, then—> F(a’, b) is provable
in L. K.

Proof. By {27, it is enough to prove that if F{a, b)DF(a, b) is provable in
B, F(a', b) is provable in B; . Suppose that

4.3.1.1 (a<<boa'=pbVa' <<b)I(@ <bDha!=bVa''<b)

4.3.1.2 la<bVa' =bVa' b &/ hVal=pVa'l <d.

4.3.1.3 a'<<b 2a<hb

43.1.4 "Ta<<b 2 ]a’"<b 4.3.1.3
4.3.1.5 la<bD ja'<bWVa''=bVa''h 4.3.1.4
4.3.1.6 a’=b> Ja’'b C )
4.3.1.7 a'=bT ' {bVa''=bVa' "\ 43.1.6
4.31.8 a’<<b D @' <<bVa'l=b a' b 4.3.1.2, 4.3.1.5, 4.3.1.7
4.3.1.9 a'<poa'’ =b\Va'l < b 4.3.1 8
4.3.2 1f F(a', b) »F(a, b) is provable in L K|, then—F(a, b) is provable
in L Kj.

proof. Suppose that

4.3.2.1 (@' <bDa''=bVa''<b)D(a<h Da =hVa <h)
4.3.2.2 Th'<<bVa'l=bVa'<bI la<bVa =hva' <bh
3.2.3 al'l=pal<b

.3.2.4 a''=p D ja<<bVa =bVa <b

.3.2.5 a’’<{bTa'<h

3.2.6 all<bD la<bVal =b\a < b

3,27 Tal<bD Ja<bVa =b\a < b

R N S N
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4.3.2.8 Tla<b\a' =b\a <h .

Let L K, denote a system L K, (<4 ) ; where (< ) is the formula a<(bDa’<b’.
4.33 If F(a, b) = F(a, b') is provable in L K,, then — F(a, b’) is provable
in L K,.

Proof.

Suppose that

4.3.3.1 (a<<bDa'=1p\a' <b)(a<b/ Da =b"\/a'<b")

4.3.3.2 “la<bVa'=bVa' <bD la<b \Va =b\/a' b’

4.3.3.3 a' =1 Da’<b’

4.3.3.4 a'=b D ja<<b/\Va' =b\a b’

4.3.3.5 a'<b Da'<b!

4.3.3.6 a/<bID ja<b’Va =b/\a <b'!

4.3.3.7 Tla<b D la<b!\/a =b/a b

4.3.3.8 Ja<{b'Va' =b'\/a' b’

4.3.4 1If F(a, b) — F(a, b) is provable in L K, , then—>F (a, b) is provable
in L K.

Proof. Suppose

4.3.4.1 (a<b/Da'=b'\/a'<b’) 72 (a<bla'=bVa <b)

4.3.4.2 Tla<b'\a =b’\/a'<b' T la<{bvAa =bVa b

4.3.4.3 a<b a<bl

4.3.4.4 “la<b S la<<bVa =bVa b

4.3.4.5 a'=b' = ' b’

4.3.4.6 a'=b' D la<bVa =bVa b

4.3.4.7 a'<b/ D ja<{bVa =bVa' b

4.3.4.8 “la<{bVa =bVa b

4.3.5 If F(a, b) — F(acn,b) is provable in L Ky, then F(acn,b) is provable
in L K.

Proof. If n= (, proof is evident.

Suppose

4.3.5.1 (a<bDa =BVa/ <b)2(atwpaltD=p\at+Ih)

4.3.5.2 aw<phbDa<h

5.3.5.3 _la<b_“_j“"|a@z}<b\/ a (2t 1) = b\ a(¢z+1)<b

4.3.5.4 a’=b D JamW]b

4.3.55 a/=b " Jat< bV al+rD=}p\ a+th

4.3.5.6 a/<<bID la bV al+rD=1}\atrDJIh

4.3.5.7 am<bhDa b

4.3.5.8 a<phDaltD=p\/al+Dh

4.3.6 If F(a,b,)—=F(a, b) is provable in LK, then— F(a, b) is provable
in L Ky.

Proof. If n= 0, proof is evident.
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Suppose

4.3.6.1 JaW{phVart D=}/ at+rDIpD TabVa =bVa' <h

4.3.6.2 aCitll=1} Da/<h

4.3.6.3 atli—p 7 la<hVa =bVa <b

5.3.6.4 aCp D Ja<hVa =bVa' b

4.3.6.5 “jamW< b Ja<{bVa =bVa' b

4.3.6.6 ja<bWVa' =bVa <b

4.3.7 If F(a, b) - F (a, b) is provable in L K,, then — F (a, b) is
prvoable in L K.

Proof. The case n= ( is trivial.

4.3.7.1 Ja<hVa'=bVa/ <b Ja<lbW<a =pb\/a < b

4.3.7.2 a' =} Sal < pw

4.3.7.3 a' =p D ja<{bVa =p\/a' < p

4.3.7.4 a'<b D Ja<{bVa =pH\/al < Hw

4.3.7.5 la<{b ja<{b{/al = Hm\/a' < H

4,3.7.6 a<h a' < Hhw

4.3.7.7 “la<{hU\/a =bN\/al < ph

4.3.8 If F(a, b») — F(a, b) is provable in L K,, then — F(a, b) is provable
in L K.

Proof ; n= 0, proof is trivial.

Suppose  Ja<bWVal = pIVa b D ja]bVa =bh<a'<b

4.3.8.1 a<{bDa<bw

4.3.8.2 la<<{b@W> ) Ja<{bVa' =bVa' <b

4.3.8.3 al=bD Ta<{bVa' =bVa b

4.3.8.4 a/<pbWI lalbVa =bVa' b

4.3.8.5 a'<<pWIZ la<bVa =bVa <b

4.3.8.6 Ja<l{bVa' =bVa' b

4.3.9 If F(atm, b — F(alm, b) is provable in L K;, then — F (a0Um, L) is
provable in L K.

Proof. 4.3.5—6.

4.3.10. If F(a, b)) — F(a, bU®) is provable in . K,, then — F(a, b0m)
is provable in L K, .

4.3.11 F(a, b) —» F(al, b{) is provable in L X,.

4.4 Uf F(a, bla, a<{b Da'=ba'<b, is provable, then there is the following

normal proof.



Kempatiro Ohasi

24

(r e de(aie)d

(a M) <«

(A

(a4 Smde( e d (94 md

IO

(6 md < G eid

(o ‘M) J <«

(22) 7V -+ (9 ‘) < (g D)ol () 5V

YA — (9 m)g

AH .qu‘ H&\.\.wm \ mv~ v am .\‘

(T2) TV “(,F) sV (qhed« (9 Mg (,q ‘e)d - () ¥V

G T (g G4 )T (e e e (e 1Y

o) TV (R m) Y

‘o) d &

ST TRy



On a Problam of Elementary Number Theory 25

Proof.
The formula A derived by inferences of induction generates a formula B (eventually
A itself), which is eliminated by cut or generate the end-formula. We shall

consider only the case where B is eliminated.

As is seen in 83, we have to consider only the case, where chief-formulas of
inferences of induction is eliminated as follows ;
r=2n, Alo)  A(a). roA, A@)
r—>nN. ACe) A(t), m—>4
r, = — A. 4

!

¢ — ¥

4.4.0.1. Whenr, =, A, 4 don’t contain a and variables included in A (¢),

the reduction is as follows ;
r— A. A(o) CA(a), r=A, AQ@) A(1), w4

r, = — Av v, A(O) _A(a); r, H‘%ZS; 4, [/X (a/> 44(t)) r, 77:*>A’ A

| | L

$—>v. A(o) A(a)., ¢y, A(a)
¢ —>v, A(t) A(t), ¢d—>v
¢ >
4.4.0.2. I, /\ contain a variable included in A(¢), but =, Ado not so.
r, z — /A, 4
¢ —> ¥

It i3 evideat whea the variable included in A (¢) is no eigenvariable of

inference 2.4.

r—> A A(o)  A(a), oA A7) A(r), = —4

r: T %A: /\) A(O) A»(a)’F, 7{_91&1/1514(3/) A<t>, f) 73'_>A; A

| | |

6 v, A(0) A(a), 4—>v, A@R)
g—=>v, A(L) A(L), ¢

b=

We shall consider the case, where a variable included in A (¢) has to satisfy the
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variable-condition as the eigenvariable of the inference.

r, ﬂ%ﬁ, 4 r, ﬁk)[l} A
| |
¢o—7>1/’o, B(b) B(b)y {/5 7>l/fo
b0 Vo, (2)B(%) (@)B(%), ¢ ¥o
g — ¥ b > ¥

Every inference of induction can be put off one by one, andthen only
eigenvariables of (), (gx) need to be considered. The end-formula is of the form

A(a, b,), and then (x)B (%) must generate a formula D, which is eliminated

by cut.
$o > o, (C)B(?C)
61— v, D Dy g = by
¢j » ¢2 - wi ? ’\IZFZ
o =
or

¢ ‘>¢oy (7>B(%>

|

by >y, D D, by =y

bog, 1 > ¥z, Vi

l

b > v

D contains (z)B(x) as its part, then

D, ¢4 = vy

is a proof of D, ¢, — ¥, Therefore
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4.4.0.2.1.  (x)B(z) is derivable by the proof

|

B(a), ¢4 = ¥4

(x)B(x), ¢4 = ¥4
|

!

(x)B(x), ¢3 —> ¥3
or by
4.4.0.2.2.
by > Yy
(2)B(%), ¢4 — ¥y
or by
4.4.0.2.3.

(z)B(%) = (%)B(*)

|

(%)B(X), ¢'4%"‘7Lﬂ4

Reduction in the cases 4.4.0.2.1—2. is as follows ;

r—/A, A(o) Ala). r—>/, A(a”)

r,m—=>A,4,A) A@), r,r—> AN, 4,A@")

i R S 2 l l
¢ o”"y‘rlfo N ‘4 (O) » B (b) B (b) ? ¢4 k4>ll,4 7) 4 %"1{']‘4
bo, B4—Vo. AW), Vs A@).S, >V A, (@), B(b) B(b),d,—>vy A(t),m—>4

A(a), ¢o=¢4'—> wo,A(a/)y"lllf— l

qﬂo ’¢4 %ﬂ#o 91//‘4 “4 (O) AA (8.) 7¢O¢ 34 %\/ro -'\lbhz!- 1A(a’) I/L<Z£) “(/éoew07B B 5-054 —?w/f/;
¢oy (/)4 %’\/ijw 3/].49 A(t) A(Z)v ¢oe ¢4 ">w09 q/'hzl

Qso; {«64 —> 1#0,1 1//"4

|

b > W

1f eigenvariables in ", 7, /A, 4 are exchanged by suitable variables, the above

J— 27 J—
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proof of ¢ — v from ¢, b4 — Vo, V¥4 exactly exists.

In the case 4.4.0.2.3. (x)B(xz) must be eliminated, and there must be the
following in the proof, and then consideration analogous to the above , concerning
$o—> ¥, B(a) and E, ¢5; — vy is sufficient.

(z)B(x) — (#) B(x)
4

(x)B(%), b4V E B, d5 Y5
(X>E;(X>? (/)‘1? (/55;7)"7/,\4: ’\//5

Thus ocur theorem is proved.
Now, let L. K3 be a system consisting of (J;), Jy), ), (<4), &), ),
(<50, (<Ks)-
(<5) 10=aT0<a
(<s) (0=0a\/0mwWa)D(gx)(x"=a) for n %o
L K4 is equivalent to the system (A) in [IJ p. 263, then the completeness theorem
in (17 p. 264 is effectied.
In the above proof
Ay (a) - F@, b), Fl, b)=F@", b), o , A (@'y)
is provable without inferences of 2.4. Therefore,
Ayf(ag) - Flu, b) » F@, b)) - Ay @'3)
is provable in L K5, or
Ap(ap) = A @)
is provable L K;.
Now, suppose that
Ay (az) - = - Ay (@y)
is not provable without the inference of 2.4 with respect to A; (a ).
4.4.1.1 If
Ay (ap) - = F@, b)) -« A: @)
is provable in I, K3, then another proof of
Az (az) - = Az (az')

is obtained as follows
A (a;), Az(az) - = - Ay (aly)
Az (@ag) - — - Ay (@ly), A (o) A (o), Axf(ag) - — - Az (aly)
Az (ag) > - Ay (@y)

This contradicts the hypothesis, and then
4.4.1.2 A (a;) - = A @y)
is provable in L Kj;. Therefore,

Ay (ap), FF(a, b)), Fla, b) — A4 (a'y)

is provable without the above mentioned inference 7.4. But, evidently,
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F(a, b)), F(u, b) —
is not provable, then we have
F(a, b%), F(u, b) = A;(a)
in L. Ky. a theorem in
Therefore, by {11, (p. 264),
(2YODVF (2, ¥4 (a)
is provable in L K.
That is, there are variable terms a” ---, a1g1, b, -+, bigy
such that F(a”, b") -~ F(ap1, bip1) = A (a)
is provable in L K.
Therefore,
Az (82) A (En) F(a, B") - Flany, b)), Fa,b’), Fu,b)—>F@%b7)
is provable without the inference of 2.4 with respect to A; (2).

Finally, at least one of two sequents

Az (ag) - = As(az’)
Ag (t2) = Ay (237)

is provable without the infrence of 2.4 with respect to Aq (a).

or

If we go on these considerations, we have the followineg proposition.
There are variable terms a;, -+, a;, b, Dy
such that _

F(a;, a;) - F(a;, b;), F(a, b)), F(u, b) — F’, b))
is provable in LK,.
But, by [ 2], the sequent is provable without cut, because it is provable in L Kj.
4.4.2 We shall define "number” as follows ;
4.4.2.1.1 o, w are numbers,
4.4.2.1.2 If a is a number, then a’ is a number.
4.4.2.1.3 The only numbers are given by 4.4.2.1.1—2.
The order < hetween numbers is defined a sfollows ;
4.4.2.2.1 a<a’
4.4.2.2.2 If a<lbh, b<c, then a<{c
4.4.2.2.5 a<'a is false.
4.4.2.2.4 o< wbw
4.4.2.2.5 oW=wln is false
4.4.2.2.6 oM<wlm (n>>m), wl<olmare f[alse

Numbers, order defined here, underestanding logical symbols in its ordinary

meaning costruct a model, which satisfies B’{ and (<y) (<5), (). If a; is
generated from a, and b; from b, and

Fa;, b)), I — Fa’, b))
is provable in L K3, then

r—F (atm, boo)

o 2(') J—
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is provable in L XKj3. And then if (A) is provable in L Kj,
Fa;, b)), F(a, b) - F@®, b)) for any « n
is prvable in L. K5. But
Faj, a;) =+, F(u, b) — F@", bw)
is not universally true in M,
For, let a0 he olk) and 6% be w(, where £ is large enough to be such that all
variable terms in the antecedent, which is genereated from a, are ¢@, [>m, where
other variables are wlme+id =5, 1, 2,
F (oD, wimis true F(wlm o0 is true and F (w@, w@) is true. But
F (o0, wk)) is false, because 00k < w®> but otk +1)= g0k, ol +15 < k)
are false.
And then
F(a;, by) - = F(al, pw)
is not provable in L Kj3. By this proof, (A) is independent in L K;. Thus, the
independence of (A) is proved.
4.5 Consequence of the independence of (A). We shall prove that (B) is indepen-
dent in L K,.
(BY A(b)&(x)(A(2x) DA ) D(a=bVb<TaDA(a))
4.5.1 Definition F(u) =b’=u\/b’<lu\/b =v’
4.5.2 F(b)
4.5.3 b’=a OF(a)
4.5.4 b <laDF()
4.5.5 b’=a’2F %)
4.5.6 F(a)DF()
4.5.7 F(b)&(z)(F(a)DF(a”))
Suppose (B) is provable.
4.5.8 a=pbVb<lalb =aVyb’<la\/b' =a’
4.5.9 a=bDF(a)
4.5.10 b<laDb’=aV/b’<la‘/b’=a’
4.5.11 b<Ta Ob’<la’
4.5.12 bh<{a) b’ =a’
4.5.13 b<laOb’=a\/b’<]a
But 4.5.13 is not provable in . K, , and then (B) is independent in L. K,.
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