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The rigoruos investigations of "truth”” and “provability” in a latest quarter
century began with the incomplete theorem of K. Gbodel ¥0, where he presented
a negative example, the formula asserting its own unprovability, more precisely,
the formula A with ¢ as its Godel number expressing unprovability in S of a
formula with q. Corresponding to it, Leon Henkin 2> presented the following
problem :

"If § is any standard formal system adequate for rvecursive number theory, a
formula (having a certain integer p as its Gtdel number) can be constructed which
expresses the proposition that the formula with Gdel number p is provable in §.
Is this formula provable or not in S ?

This problem was positively solved for a suitable "provability” predicate by
Lob. 38 That is, he presented a sufficient condition of "provability” predicate {for
the problem.

G. Kreisel, 4 however, reviewed that the "provability” predicate used by L&b
is rather strong and the one constructed by the former does not satisfy the
condition by the latter. It is then natural to inquire for what kind of "provability”
predicate the above problem is negatively solved.

The aim of this paper is to show that a modified "provability” predicate is
essentially necessary and sufficient for the positive solution.

Acquaintance with {I] 5 is assumed.

I. Theorem of M. H. Lob

Let (§) be a standard consistent formal system containing recursive number
theory and Godel substitution function for a Godel numbering of (§), and { 4 }
denote the Gddel number of a formula A, B (n) be a "provability” predicate,
corresponding to the conception "provable” defined for (.S), that is, a predicate
that expresses the proposition that the formula with » is provable in (.S), and,
moreover, § (n, m) be a function whose value is the Godel number of the formula

with n as its Gdel number in which is substituted a variable, corresponding to m,
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in the only argument-place. By means of 5 (n, m) Theorem of L&b is proved.
Theorem of Lob is :

If B satisfies the following conditions ;

(1) B ({ADB}) D (B{AH DB ({B})

(2) —A->+=EB({A})

(3) —B{ANDB{{B{AND
then |- A for any formula A that |— B ({A})~A.
By this theorem we obtain a formal proof of an incomplete theorem.

In a consistent system wth B satisfying (1), (2), (3)and (4) there is an
undecidable formula.

(4) —B {4) —» 1 A

Proof.
Let
1.1 =TT A
Suppose that
1.2 — 18 {4D
1.3 — B {ApH~A
By Theorem of L&b
1.4 — A
This is absurd, and therefore,
1.5 = 1B {AD
Suppose that
1.6 — B ({AD
1.7 A
This contradicts 1.1, and therefore,
1.8 =B (4D

Thus we obtain an undecidable formula B({A}).

1I. Henkin's Problem

(1), (2) and (3) are a sufficient condition for positive solution of Henkin’s
problem. What is necessary for it? The following theorems will answer it.

In (S) with a "provability” predicate satisfying (2) and (4), for any formula
A that '— B ({A)~A, - A if and only if

(5) - B{BHe}HD AP_BHeHD B ({AD)

where ¢ is the formula B({ ¢ })2A4.

Proof.
2.1 — B {Ah~A
Suppose that
2.2 — A
2.3 — B {¢D&BHUB({¢+nD2AND A
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Conversely, 2.3 — 2.2, as is seen in the proof of Theorem of L&b, and
therefore 2.2 is equivalent to 2.3,
— BUAN~A and (B ¢ PDA)~o.
.3 is then equivalent to
4 EBHAN~AD(BHe DA ~e)DBHe) & BUBH{e D ANDA))
“ake A, ¢/ and K for BHA}), B{¢)}) and B{B({¢}) DA} respectively.
5 HA'~A)D(@ D A~e)D(e & K ) A)
6 = 1CTAVA) & (AVTIANDVTICICI VANV ¢) & CleN/ eV A)Y)
Vo OTe TR Y A
= (A& AV OTA & AVICTRIVA) & o)V (e&e & T14)
\VAR ZAVARI GV
ANV ANV TV A&TTo)V (9 & & TAN WV K
HATVAY (T &)V A& o)V (e P H&(TTIAV 1)V IK
FANVOW & o)V (A& AV e VK
S ZAVE AV IAVIAVAR) ¢
=N e )N CIRN Tl AN CIRV I VAT
—(BHeNDe)VEBUB{sHDANDMEBHHNDA)
VEBHBH{e¢HDOAHDBHeHDOBHAN)
The first term and the second in the disjunction 2.13 are of the same formula,
and moreover, are equivalent to the third. For, suppose
2.14 —RR{epDe
2.15 FBHeNDEHeHA)
2.16 —BH{e¢NTA
2.17 ¢
2.18 HB{e¢}
2.19 A
2.20 HEB{AN
2.21 FEBH{BH{sHDOANDBHeHN2B{AL)
Conversely, suppose 2.2]
2.22 =B{ehHhT(BHyHDOBHAL)
2.23 FB{eHTA
2.24 o
2.25 =BHep
2,14 —=BHe}De

Thus 2.21 is equivalent to 2.14 and then to 2.13. Since replacements from 2.4

éi
Z
T
Z
2\

«
-

N
L}
O ~1

b N
353

to 2.13 are equivalent, the theorem is obtained.
In (S) with B satisfying (6),— A for any formula A such that |— B({A})~A4
if H, which is the formula in the problem of . Henkin, is formally obtained by
(2), (6) and rules of inference.

(6) HFBH{X DY H-FBU{XHDOBHY)H
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Proof.

A proof generally can be represented by such a figure as presented in Fig. 1,
that is, a proof is regarded as a tree, and each top of it is an axiom of (§),
and a sequence (of formula) under a line is derived from a segence on the line
by the rule of inference. For example, Aa(As5) in Fig. 1 is derived from As and

Na DAz (A1).

AN
A IVAY: VAT
L ,
_ At
__A:__,
Fig. 1.

where rules of inference are as follows;

(@) 7:47}/3&;;3

(b) C3A (D
0) COHvzA(zx)

(o) At)2C

qzA (z) OC”
where ¢ is not included free in C.
Now, from the proof of the formula H, we will construct PA, which is a proof
of A, as follows. Replace H in PH by A, and
{HY={B{H)) {H)={BUHP)}ID(A(AH} YOACA{BEHY) }) )

ACA{-H--F},-)

ACAH P YTACT-B{HAY 3,
AT BAH) ¥,

is replaced by a new figure defined below.

H and BH{H}) are wifs without any free variables, and then the fact that not
only =H~B{H}) but H is B ({H)), is used only in the forms {---Z{ -} and {--B
{HY -} (Hy=A{B{HIYH}).

7. e. in a schema as follows;

by D=(BUH)) ACA{-H})
ACTTBHHY )

It is sufficient to show how to construct FPA in the following figure.

{H)Yy={B{H}) KB Y H ) 3e) o)
X(BCAYITBUHY YD) ’

where X and Y do not contain B, or it is divided into the above cases.
Take A, for Y («H-)
B, ” Y (BY{H)) )
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Ax ” B ({4.h
B1 " B ({B.})
As ” %o (A
Bo 7 x (B

A~BU{AY)  (A~B{AY))~(Ad,~B,) s
Ac'-\"Bo (AONBOJN(BOEAO>

B, A,
B({B, A,
B j A
Fig. 2.

A~B{A)) (AVB({A}))Z:D (A, DB,) :
Ao""Bo (AONBO)D(AONBO)
A DB,

BUAIB).

4SBT (A10BD)O((BiOAD) J(A1~B1)
(B1D A1) D(A1DBy)

Fig. 3.

BiDA;z (B12A1) D (A1DBy) 5
Ai~By (A3~B31) D(A2~B>»)

Ao~Bo (Aa~B2) (A Ba)
Ao A2 Bs
B2
Fig. 4.

If parts (%) in PH are replaced by a figure presented in Figs 2, 3, 4, we
have a new figure PA. It is easily seen that PA constructed here is a proof of A
such that - B ({A})~A. Thus theorem is proved.

Applying the above replacement to 2.4, we have,

A formula A, such that |- B ({A}) ~ A, is formally derived in (.5) satisfying
Deduction theorem and (2), — A if and only if for any formula X and Y

(7) =B ({(BHXHDYNOMBEXHD B {Y))

Remarks.

Asssume

(7) — B ({(BHXH2YHDEEIXHD B {YH)

Take B({X}) for Y,
31 =B UBHXHDB {XHHDoBHIXHND B {BUXHN)
3.2 —B{XHhDODB{B{XhH)H

Therefore, (7) — (2).

On the other hand, assume (3), (1),
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3.3 B {BUX)NODYNDEBHABHU{XHHNDBHY}))
3.4 B ({BU{XHDOYHNDBHUXHDOBHYN).

Therefore (1) and (2) — (7).

By the theorems proved above, we have the following chief proposition.

In (8) with B satisfying (2), (4), and (6), |~ A is formally derivable for
any formnla A, provided that — B ({A})~A, if and only if for any formula X
and Y

B ({(BU{XH2oYHo@BUXNDBHY )

The theorems obtained above are only the results on general investigations
without entering into precise considerations of "provability”, and then they do not
answer the question. For it, particular invesitgations of "provability” of each axiom

system have to be made.
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